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RADIAIL EXPANSICN OF A PERFECT AND VIBRATIONALLY
RELAXING GAS DUE TO A SUDDENLY CONNECTED SOURCE
IN A VACUUM

N. V. Stankus and S. F, Chekmarevy UDC 533.6.011

Radial expansion of a gas due to a suddenly connected stationary source is the model for a theoretical
investigation of the process of stationary flow shaping in supersonic nozzles and strongly underexpanded jets
during their onset [1, 2]. A flow is usually started up either by means of shock or explosive gas compression
in the forechamber or by disruption of the diaphragm between the high-pressure chamber and the nozzle. In
the former case the gas has a high temperature, in which connection the question of relaxation of the vibra-
tional degrees of freedom of the molecules [3] becomes important, while in the latter case of high density, the
question of gas condensation arises [4]. In their energetic characteristics both of these phenomena may exert
significant influence on the gas flow. The question of vibrational relaxation is also important for gasdynamic
lasers with shock heating of the gas [5].

The problem of the flow of a vibrationally relaxing gas due to a suddenly connected source during expan-
sion into a vacuum is considered in this paper. For a perfect gas this problem was examined in [1], where the
main attention was paid to calculating the buildup time of the stationary flow. A numerical solution is obtained
below for the problem for a perfect gas, which corresponds to the case of a "frozen flow," and a vibrationally
relaxing gas (up to equilibrium flow). It is shown that an approximate self-similar representation exists for the
gas velocity and density distribution at large times. By using this representation, an estimate is obtained of
the location of the vibrational temperature "freezing" point which describes its dynamics and agrees well with
results of numerical computations, The results presented can be used to estimate the influence of the conden-
sation process.

1, Statement of the Problem. There is a radial gas source with a surface of radius ry, The pressure is
Pw = 0 in the surrounding space. At the time t = 0 the source is connected, and the gas velocity v, the pres-
sure p, the temperature T and the vibrational energy £y on the surface of the source r = r{ acquire the given
values vy > 0, p;, T{, €y, which do not change with time, by a jump. Determine the behavior of the gas para-
meters with time for r > ry,

Taking account of vibrational relaxation, the nonstationary one-dimensional gas flow is described by the
following system of equations (in a Lagrange coordinate system) [6, 7]:
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where t is the time, r is the radius of a liquid particle, s = j prodr is the Lagrange mass variable, n is the
T

flow symmetry superscript, 8V is the equilibrium value of the vibrational energy, 7 is the relaxatlon time, and
ey + ¢ is the internal energy of the gas. All the quantities are dimensionless, and the values s; = p;r] 1/(n +
1), vi, Py Dy = pRTy, &1 = cy¢Ty, where cyy is the specific heat of the gas with frozen vibrational degrees of
freedom, are selected as scales for the variables s, v, p, p, €. The Mach number is M; = v; /¢y, where ¢y is
the frozen speed of sound at the source ¢; = \/—%_fR—T—l, and %¢ = (cyf + R) /eyg. The time scale is t; = r; /v,. The
vibrational energy ev, av is referred fo €4,

The boundary conditions have the form

t = 0: for r=1U:1, p——“l,T’—:l, Ly = Eyi,
for r>1p =0,
t>0 for r=1v=1, p=1,T =1, ey = eyy,

for r=r; p=20,

where r; is the radius of the contact surface (the front of the escaping gas).

The problem was solved numerically. An implicit difference scheme of accuracy O [At + (As)?] was used
with iterative resolution of the system of difference equations at each time spacing [6]. Additional transforma-
tions are made in the approximation of the relaxation equation in order to compute almost-equilibrium flows
[8]. The computations were executed with constant time At and mass As spacings.

All the computations were performed for the case of a CO, flow from a spherically symmetrlc source
(o = 2) with Mach number M; =1, ®¢ = 1.4, Ty = 2000°K. The equilibrium vibrational energy SV was calculated
by means of the formula for a harmomc oscillator with all kinds of CO, molecule vibrations takeninto account:

ey = X hw;/ (""" — 1), where fw;j/k is the characteristic temperature of the j-th mode. It is assumed in the
j

computation of the relaxation that all the levels relax with the same time {9] determined by the formula 7p =
exp (36.5T~1/3 — 3,9) 0.1033Pa- sec.

After having gone over to dimensionless variables 7p = A exp (BT‘I/3 —3.9), where A = ¢;M,/pr; and
V =36.5T7! 3, For a given temperature T, at the source, the flow for this gas depends only on one parameter
p;r;. The cases p;r; = 0 and pyr; = = here correspond to frozen and equilibrium flows [10].

2. Perfect Gas Flow. Results of a computation for » = const = 1.4, which corresponds tc the frozen,
isentropic escape of CO,, are presented by continuous curves in Fig, 1a and b. The velocity distributions over
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the radius are presented at the times t = 4, 8, 16 in Fig, la, and the temperature and density distributions at
the same times in Fig. 1b, It is seen from the distributions presented that the flow consists of two domains [1]:
the stationary flow domain [11] and a nonstationary rarefaction wave connecting the stationary flow to a vacuum.
The stream parameters in the nonstationary rarefaction wave vary considerably more strongly than in the sta-
tionary flow domain,

When escaping into a vacuum, the front of the escaping gas moves at a constant velccity corresponding
to the maximum escape velocity vy = (v + 1) /(n — 1) and its radius is rj = vyt + 1 [1]. The maximal value
of the velocity vy is not achieved in these numerical computations and the front is itself near the source.
This is because the mass variable s is used in the computations. On the gas front p = 0, where or® diminishes
as r~% with @ > 1 as the front is approached (see below). Consequently, the gas layer abutting on the front
will always be thinner than the real layer when using a central second-order approximation in s, and secondly,
it is difficult to achieve the layer width necessary by diminishing the mass spacing As, and thereby approaching
the theoretical front. Presented as an illustration in Fig. 2, the continuous curves are the velocity distributions
for the computation spacing As = 0.1, used to perform the main computations, while the points are for a spac-
ing one~tenth the size. It is important that the parameter distributions in the domain where they had been
earlier should not undergo changes. Moreover, the behavior of the parameters near the front has a regular
tendency. Thus, if the linear nature of the behavior of the velocity in the nonstationary rarefaction wave is
taken into account, and it is extrapolated to the value vp,y11, as is done in the dashed lines in Fig. 2, the loca-
tion of the gas front agrees well with the theoretical value, It must he noted that in the case of an escape into
a vacuum, the gas motion near the front is not described by the theory of an ideal fluid,

Let us investigate the asymptotic behavior of the stream parameters for large times. Let us first ex-
amine the nonstationary rarefaction waves. Since the maximal velocity of nonstationary expansion with which
the excaping gas front moves is much greater than the initial gas veloecity [by (w + 1) /(» — 1 times)] the gas
motion in the nonstationary rarefaction wave is almost exactly the same as for the dissipation of a finite mass
of gas. This is confirmed by the nature of the parameter behavior in the given domain and by a comparison of
the results of solving the problem under consideration with computations of the dissipation of a finite mass as
performed by the authors in [12],

It is known that the flow "forgets™ the initial size of the bunch during dissipation of a finite mass of gas
into a vacuum at distances much greater than the initial radius of the bunech, and is determined by two guan-
tities of independent dimensionality, the mass of the bunch and its energy [13, 14]. The problem here has a
self-similar solution determined by the single self-similar variable A = r /t, where the gas velocity is v = A
and the combination is pt? = @(A). The other parameters of the gas state are determined from the condition of
isentropicity of the flow., These results can be extended even to the gas motion in the nonstationary rarefaction
wave,

The stationary flow from the source at large distances also does not depend on the source dimensions,
and is determined by the mass and momentum fluxes {2, 11]. In this case, X = r/t will be the self-similar
variable, as before, The velocity is v = v (® + 1) /(® — 1), and only the combination st’ will be a function of A.

At large times the boundary between the stationary flow and the nonstationary rarefaction wave domains
moves at a constant speed v (» + 1) /(» —1) {1] (see Fig., 1a). Hence, in a self-similar representation with the
variable A = r/t, the whole flow domain from the source will, as t — «, be separated by a boundary with the
fixed value A =V = 1) /(n — 1), and the distribution of the velocity v will extend over the whole flow domain,
Such an extension is represented in Fig. 3a for the times t=4,9,16, 32, Ifis seen that in the stationary flow sec-
tion the velocity tends to a constant value corresponding to the maximal stationary escape velocity into a vacu-
um vppe = Vi + 1)/ = 1) (Ve = 2.45 for % = 1.4), and to the distribution v = A in the nonstationary rarefac-
tion wave domain. This limit solution is shown by the dashed line in Fig. 3a,
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The following can be said relative to the density. It is impossible to extend the density distribution over
the whole flow domain analogously to the velocity. However, as computations show, for the nonstationary flow
(strictly speaking, with the exception of the domain near the front), the quantity pt® is almost a power-law func-
tion of the self-similar variable A with a large negative exponent ot ~ A~%, o ~ 10, Cons equently, the quantity
pt? = pt?/t can approximately be considered a function also of A, which indeed permits the construction of an
approximate self-similar representation for the density in the whole flow domain from the source (it is exact
on the stationary flow section). This is quite convenient for a different kind of estimate and computation. The
results of such an extension are represented in Fig. 3b.

Let us note that the mass of gas enclosed in the nonstationary flow domain tends to the finite value sy = 2
(in dimensionless quantities) as t — «, This means that the gas escaping from the surface of the source up to
the time t = 2 is here diverted to the formation of the stationary rarefaction wave.

3. Flow with Vibrational Relaxation. Flows with vibrational relaxation were computed for the initial con-
ditions mentioned in Sec. 1, and the values p;r; = 107%, 10% 10!, 10%, 10°. Certain results of the computations
are represented in Fig. 1a and b: the dashed curves are for p;r; = 10°, the dash—dot curves for p,r, = 10, Within
the limits of graphical error, the parameter distributions for p;r, = 107 agree, for the given times, with the
distributions for » = 1.4 corresponding to the case of "frozen" flow. The distributions for p,r; = 10° can be con~
sidered equilibrium distributions since a further increase in p;r; does not result in their changing.

The behavior of the temperature for the case p;r; = 10° is represented in Fig. 4; for this case the velocity
and density distributions are close to the distributions for p;r; = 10°,

It is seen from the graphs presented that, as in the case of perfect gas expansion, the whole flow domain
consists of two domains at eachtime, a stationary flow and a nonstationary rarefaction wave domain, Taking
account of vibrational relaxation, the stationary flow during gas expansion into a vacuum was investigated in [8].

Let us examine the nature of the parameter behavior in the nonstationary flow domain, Under given inifial
conditions, considerable energy, commensurate with the energies of the translational and rotational degrees,
is stored in the vibrational degrees of freedom; consequently, as the flow approaches equilibrium its difference
from the case n = const = 1.4, corresponding to the "frozen® flow, becomes significant. This concerns prin-
cipally the translational and vibrational temperatures, whose change is a quantity on the order of the values of
the temperatures themselves, and the density to a lesser degree if its large gradient in the rarefaction wave

is taken into account, The velocity change reaches 15-20%. ,

Let us turn to the behavior of the vibrational degrees of freedom. Although the assumption of equilibrium
within the vibrational degrees of freedom and between them was used in the computations, and the computations
were carried out in terms of the vibrational energy, it is convenient to go over to the vibrational temperature
to represent the results, It was found in terms of the value of ey from the expression for the energy of a har-
monic oscillator with all types of CQ, molecule vibrations taken into account, which had been used to evaluate
the equilibrium energy 8%/ = 8%7('.[‘),

As is seen from Fig. 4, the vibrational temperature rises in the nonstationary rarefaction wave as the
escaping gas front is approached. This is because the vibrational relaxation in the gas layers adjoining the
front is worse than in the subsequent layers because of the large degree of gas expansion. In particular, the
gas in the layer closest to the front does not succeed in relaxing generally and expands with an initial value of
Ty As aiready noted above, the computation method used does not permit obtaining the value of the para-
meters on the gas frount; hence, the vibrational temperature does not reach the value Ty, in the computations,
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Exactly as in a gas flow with ® = const = 1.4, approximate self-similar representations exist for the
velocity and density: v = v(\), pt? = ¢(\) for every pir, in the case of gas expansion with vibrational relaxation
in large times, where A = r/t.as before. They differ exactly as the velocity and density distributions differ for
these values of p,r, in a fixed and sufficiently large time, for t = 16, say.

The vibrational relaxation is felt principally in that the magnitude of the limit velocity of both the sta-
tionary and nonstationary flows increases. Moreover, because of the singularity in the behavior of the vibra-
tional temperature during the approach to the escaping gas front, reconstruction of the velocity behavior oc-
curs: it tends more fo its limit dependence in the area of the nonstationary rarefaction wave than in the case
of the "frozen" flow.

In conclusion, let us estimate the posifion of the vibrational temperature "freezing™ point in the areas of
the stationary flow and the nonstationary rarefaction wave.

The "freezing" point is defined as the point where the magnitude of the deviation from equilibrium
reaches the order of magnitude of the function itself [10]. In this case (deo/dt)f = sg/"r. We use the vibration
frequency wy corresponding to the deformation mode of the CO, vibrations with characteristic temperature
960°K. The "freezing® point is then determined from the condition

(AT1de)s b (hoy kT 5)? = hoy/tvy,
where T corresponds to the equilibrium case.

Let us use the approximate self-similar representation of the density ot = p(\), where

al?\a'?, a; = 0_,43 for 0CAL ]/(x - 1)/(% —1),
M= 3.1
R P R S SRV Sy £ 1) (3.1)

Then taking into account that T ~ p"~!and dT/dt = (x — 1)dInp/dt = 2(» — 1)T/t, we obtain for the "freezing"
point tf = (yhw, / kTeTys, where v = 2(n — 1). After substituting the expression for Ty we finally have tf =
(v® / Tepp) exp (BT ? ~ C); 9, = iw, / k is the characteristic temperature.

In the stationary flow domain, we obtain the following expression to determine the freezing point
_X—1 2 )
: ® 4} 6 Zx-1
T?’—4K(%) %:eXp[b(z+i/ a _"C:L

8 B8, \i'3
where @ = — p2/,‘ i b= @1‘33 (—;—) ; ©=3.9, by going from the time variable to the radius by means of the
17171 2

formula t = r/vy,, in dimensionless variables.

For the estimate we take » ¥ 1.25, ®, = 1000°K, T, = 2000°K, p,r; = 10°. Then rf = 12 (in the computa-
tions rg = 12-15).

The position of the freezing point in the nonstationary flow domain, obtained under the condition that the
gas expands in equilibrium in the stationary flow domain, is determined by the expression

1 1—% ) )
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o == 10 (seeexpression (3.1)).
Under the same conditions as in the stationary flow domain, we obtain
A= r/t = 3,66¢-0.1%,
For instance, for t = 4 this yields r¢ = 10 (in the computations ry = 10-12).

As is seen from the last expression, the freezing point in the nonstationary flow domain slowly moves to
the stationary flow section with time,

In conclusion, we make a remark about the influence of condensation on the gas flow, Vibrational relaxa-
tion influences the gas flow during expansion principally because of heat transfer from the vibrational to the
translational degrees of freedom. An analogous phenomenon of heat transfer (latent heat of vapor formation)
occurs even during gas condensation. It is shown in [15] that a change occurs in the distribution of the stream
parameters during stationary gas expansion (velocity, density, pressure, and translational temperature) quali-
tatively identically in these two cases. There is no foundation to consider that this analogy is spoiled in the
nonstationary case.

The maximum mass fraction of condensate does not usually exceed 20-30% during gas expansion, In this
case energy will be liberated intothe stream, which is approximately equal to the energy stored in the vibra-
tional degrees of freedom under the conditions considered in this paper (T, = 2000°K).

Therefore, the influence of condensation on the gas flow can be traced qualitatively by means of the re-
sults presented above for the flow of a vibrationally relaxing gas, where the maximal influence will not ex-
ceed, in order of magnitude, the difference between the stream parameter distributions for the equilibrium
and the "frozen" flows.

The authors are grateful to P, A, Skovorodko for his useful discussion,
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