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R A D I A L  E X P A N S I O N  O F  A 

R E L A X I N G  GAS D U E  T O  A 

I N  A V A C U U M  

N.  V.  S t a n k u s  a n d  S.  

PERFECT AND VIBRATIONALLY 

SUDDENLY CONNECTED SOURCE 

Fo Chekmarev UDC 533.6.011 

Radial expansion of a gas due to a suddenly connected stationary source is the model for a theoretical 
investigation of the process of stationary flow shaping in supersonic nozzles and strongly underexpanded jets 
during their onset [i, 2]. A flow is usually started up either by means of shock or explosive gas compression 
in the forechamber or by disruption of the diaphragm between the high-pressure chamber and the nozzle. In 
the former case the gas has a high temperature, in which connection the question of relaxation of the vibra- 
tional degrees of freedom of the molecules [3] becomes important, while in the latter case of high density, the 
question of gas condensation arises [4]. In their energetic characteristics both of these phenomena may exert 
significant influence on the gas flow. The question of vibrational relaxation is also important for gasdynamic 

lasers with shock heating of the gas [5]. 

The problem of the flow of a vibrationally relaxing gas due to a suddenly connected source during expan- 
sion into a vacuum is considered in this paper. For a perfect gas this problem was examined in [I], where the 
main attention was paid to calculating the buildup time of the stationary flow. A numerical solution is obtained 
below for the problem for a perfect gas, which corresponds to the case of a "frozen flow," and a vibrationally 
relaxing gas (up to equilibrium flow). It is shown that an approximate self-similar representation exists for the 

gas velocity and density distribution at large times. By using this representation, an estimate is obtained of 
the location of the vibrational temperature "freezing" point which describes its dynamics and agrees well with 
results of numerical computations. The results presented can be used to estimate the influence of the conden- 

sation process. 

I. Statement of the ProbIem. There is a radial gas source with a surface of radius r~. The pressure is 
p~ = 0 in the surrounding space. At the time t = 0 the source is connected, and the gas velocity v, the pres- 
sure p, the temperature T and the vibrational energy ~V on the surface of the source r = r I acquire the given 
values v I > 0, Pl, Tt, aV~, which do not change with time, by a jump. Determine the behavior of the gas para- 
meters with time for r > r I. 

Taking account of vibrational relaxation, the nonstatienary one-dimensional gas flow is described by the 
following system of equations (in a Lagrange coordinate system) [6, 7]: 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhanild i Tekhnicheskoi Fiziki, No. 5, pp. 34-40, 
September-October, 1981. Original article submitted August 29, 1980. 
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w h e r e  t i s  t he  t i m e ,  r i s  t h e  r a d i u s  of  a l i qu id  p a r t i c l e ,  s = j' 9r'~dr i s  t h e  L a g r a n g e  m a s s  v a r i a b l e ,  n i s  t he  
r 1 

f low s y m m e t r y  s u p e r s c r i p t ,  e ~  is  t h e  e q u i l i b r i u m  v a l u e  o f  the  v i b r a t i o n a l  e n e r g y ,  r is  t he  r e l a x a t i o n  t i m e ,  and 

eV + e i s  t h e  i n t e r n a l  e n e r g y  of  t he  g a s .  A l l  t he  q u a n t i t i e s  a r e  d i m e n s i o n l e s s ,  and the  v a l u e s  s 1 = o, rp</(n + 

1), v l ,  pl,  p~ = &RT~,  e 1 = c v f T , ,  w h e r e  c v f  i s  t h e  s p e c i f i c  h e a t  of  the  gas  w i t h  f r o z e n  v i b r a t i o n a l  d e g r e e s  of 

f r e e d o m ,  a r e  s e l e c t e d  as s c a l e s  f o r  t h e  v a r i a b l e s  s ,  v ,  O, P, e.  T h e  M a t h  n u m b e r  i s  M1 = v l / % ,  w h e r e  c l  is  

t h e  f r o z e n  s p e e d  of  sound  a t  the  s o u r c e  e l  = {~<fRT1, and x f  = ( c v f  + R ) / c v f .  The  t i m e  s c a l e  i s  t ,  = r 1/v~.  T h e  

v i b r a t i o n a l  e n e r g y  e V, e ~  is  r e f e r r e d  to a l .  

The boundary conditions have the form 

t = 0 :  for r = i v =  t ,  9 = t ,  T : =  I,  ev = ev,, 
for r > t  p = 0 ,  

t > 0 :  for r = I v =  l ,  9 = 1, T = 1, ev = evl,  

for r = ri p = O, 

where r i is the radius of the contact surface (the front of the escaping gas). 

The problem was solved numerically. An implicit difference scheme of accuracy 0 [At + (As) 2] was used 
with iterative resolution of the system of difference equations at each time spacing [6]. Additional transforma- 
tions are made in the approximation of the relaxation equation in order to compute almost-equilibrium flows 

[8]. The computations were executed with constant time At and mass As spacings. 

All the computations were performed for the case of a CO 2 flow from a spherically symmetric source 
0 

(n = 2) with Mach number M I = 1, ~4f = 1.4, T I = 2000~ The equilibrium vibrational energy eV was calculated 
by means of the formula for a harmonic oscillator with all kinds of CO 2 molecule vibrations taken into account: 

8~ -~ %~ 7zo]J(e ~~ ~), where fiwj/k is the characteristic temperature of the j-th mode. It is assumed in the 
i 

computation of the relaxation that all the levels relax with the same time [9] determined by the formula rp = 

exp (36.5T-I/3 - 3.9) 0.1033Pa" sec. 

After having gone over to dimensionless variables Tp = A exp (BT -I/3 - 3.9), where A = elm i/plrl and 

V = 36.5T~ I/3. For a given temperature T I at the source, the flow for this gas depends only on one parameter 

plrl. The cases ptrl = 0 and plrl = ~ here correspond to frozen and equilibrium flows [i0]. 

2. Perfect Gas Flow. Results of a computation for ~ = const = 1.4, which corresponds to the frozen, 

isentropic escape of CO2, are presented by continuous curves in Fig. la and b. The velocity distributions over 
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the radius are presented at the times t = 4, 8, 16 in Fig. la, and the temperature and density distributions at 

the same times in Fig. lb. It is seen from the distributions presented that the flow consists of two domains [i]: 

the stationary flow domain [!i] and a nonstationary rarefaction wave connecting the stationary flow to a vacuum. 
The stream parameters in the nonstationary rarefaction wave vary considerably more strongly than in the sta- 

tionary flow domain. 

When escaping into a vacuum, the front of the escaping gas moves at a constant velocity corresponding 

to the maximum escape velocity VmH = 04 + I)/(~4- I) and its radius is r i = VmH t + 1 [I]. The maximal value 

of the velocity VmH is not achieved in these numerical computations and the front is itself near the source. 

This is because the mass variable s is used in the computations. On the gas front p = 0, where pr 3 diminishes 

as r -~ with oz >> 1 as the front is approached (see below). Consequently, the gas layer abutting on the front 

will always be thinner than the real layer when using a central second-order approximation in s, and secondly, 

it is difficult to achieve the layer width necessary by diminishing the mass spacing As~ and thereby approaching 

the theoretical front. Presented as an illustration in Fig. 2, the continuous curves are the velocity distributions 

for the computation spacing As = 0.i, used to perform the main computations, while the points are for a spac- 

ing one-tenth the size. R is important that the parameter distributions in the domain where they had been 

earlier should not undergo changes. Moreover, the behavior of the parameters near the front has a regular 

tendency. Thus, if the linear nature of the behavior of the velocity in the nonstationary rarefaction wave is 

taken into account, and it is extrapolated to the value VmH , as is done in the dashed lines in Fig. 2, the loca- 

tion of the gas front agrees well with the theoretical value. It must be noted that in the case of an escape into 

a vacuum, the gas motion near the front is not described by the theory of an ideal fluid. 

Let us investigate the asymptotic behavior of the stream parameters for large times. Let us first ex- 

amine the nonstationary rarefaction waves. Since the maximal velocity of nonstationary expansion with which 

the excaping gas front moves is much greater than the initial gas velocity [by (~4 + i)/(~ - 1 times)] the gas 

motion in the nonstationary rarefaction wave is almost exactly the same as for the dissipation of a finite mass 

of gas. This is confirmed by the nature of the parameter behavior in the given domain and by a comparison of 

the results of solving the problem under consideration with computations of the dissipation of a finite mass as 
performed by the authors in [12]. 

It is known that the flow "forgets" the initial size of the bunch during dissipation of a finite mass of gas 

into a vacuum at distances much greater than the initial radius of the bunch, and is determined by two quan- 

tities of independent dimensionality, the mass of the bunch and its energy [13, 14]. The problem here has a 
self-similar solution determined by the single self-similar variable k = r/t, where the gas velocity is v = 2t 

and the combination is 0t 3 = ~o(X). The other parameters of the gas state are determined from the condition of 

isentropicity of the flow. These results can be extended even to the gas motion in the nonstationary rarefaction 
wave. 

The stationary flow from the source at large distances also does not depend on the source dimensions, 

and is determined by the mass and momentum fluxes [2, II]. In this case, X : r/t will be the self-similar 

variable, as before. The velocity is v = # (~ + I)/(~4- I), and only the combination pt 2 will be a function of X. 

At large times the boundary between the stationary flow and the nonstationary rarefaction wave domains 
moves at a constant speed ~/(~4 + i)/(4- IT [I] (see Fig. ia). Henee, in a self-similar representation with the 

variable X = r/t, the whole flow domain from the source will, as t -- ~, be separated by a boundary with the 

fixed value X : ~-(~4 + i)/(4- I), and the distribution of the velocity v will extend over the whole flow domain. 
Such an extension is represented in Fig. 3a for the times t=4, 9, 16, 32. Itis seen that in the stationary flow sec- 

tion the velocity tends to a constant value corresponding to the maximal stationary escape velocity into a vacu- 

um Vmc = g(z + 1)/04- i) (Vine : 2.45 for ~4 = 1.4), and to the distribution v = k in the nonstationary rarefac- 
tion wave domain. This limit solution is shown by the dashed line in Fig. 3a. 
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The following can be said relative to the density. It is impossible to extend the density distribution over 

the whole flow domain analogously to the velocity. However, as computations show, for the nonstationary flow 

(strictly speaking, with the exception of the domain near the front), the quantity pt 3 is almost a power-law func- 

tion of the self-similar variable k with a large negative exponent pt 3 ~ k -~ ~ ~ i0. Consequently, the quantity 

pC 2 = pt3/t can approximately be considered a function also of ~, which indeed permits the construction of an 

approximate self-sim.ilar representation for the density in the whole flow domain from the source (it is exact 

on the stationary flow section). This is quite convenient for a different kind of estimate and computation. The 
results of such an extension are represented in Fig. 3b. 

Let us note that the mass of gas enclosed in the nonstationary flow domain tends to the finite value s H = 2 

(in dimensionless quantities) as t-* ~. This means that the gas escaping from the surface of the source up to 

the time t = 2 is here diverted to the formation of the stationary rarefaction wave. 

3. Flow with Vibrational Relaxation. Flows with vibrational relaxation were computed for the initial con- 

ditions mentioned in Sec. I, and the values plrl = 10 -5, I0 ~ 10 I, 10 3, 10 5. Certain results of the computations 

are represented in Fig. la and b: the dashed curves are for plr I = 10 5, the dash-dot curves for plrl = I0. Within 

the limits of graphical error, the parameter distributions for plr~ = 10 -5 agree, for the given times, with the 

distributions for ~,~ = 1.4 corresponding to the case of "frozen" flow. The distributions for plrl = 10 5 can be con- 

sidered equilibrium distributions since a further increase in p~r I does not result in their changing. 

The behavior of the temperature for the ease plr~ -- 10 3 is represented in Fig. 4; for this case the velocity 

and density" distributions are close to the distributions for plrl = 10 5. 

It is seen from the graphs presented that, as in the case of perfect gas expansion, the whole flow domain 

consists of two domains at eaehtime, a stationary flow and a nonstationary rarefaction wave domain. Taking 

account of vibrational relaxation, the stationary flow during gas expansion into a vacuum was investigated in [8]. 

Let us examine the nature of the parameter behavior in the nonstationary flow domain. Under given initial 

conditions, considerable energy, commensurate with the energies of the translational and rotational degrees, 

is stored in the vibrational degrees of freedom; consequently, as the flow approaches equilibrium its difference 
from the case 24 = const = 1.4, corresponding to the "frozen" flow, becomes significant. This concerns prin- 

cipally the translational and vibrational temperatures, whose change is a quantity on the order of the values of 
the temperatures themselves, and the density to a lesser degree if its large gradient in the rarefaction wave 

is taken into account. The velocity change reaches 15-2ffJo. / 

Let us turn to the behavior of the vibrational degrees of freedom. Although the assumption of equilibrium 
within the vibrational degrees of freedom and between them was used in the computations, and the computations 

were carried out in terms of the vibrational energy, it is convenient to go over to the vibrational temperature 

to represent the results. It was found in terms of the value of e v from the expression for the energy of a har- 
monic oscillator with all types of CO 2 molecule vibrations taken into account, which had been used to evaluate 

the equilibrium energy e~ = e~(T). 

As is seen from Fig. 4, the vibrational temperature rises in the nonstationary rarefaction wave as the 
escaping gas front is approached. This is because the vibrational relaxation in the gas layers adjoining the 
front is worse than in the subsequent layers because of the large degree of gas expansion. In particular, the 
gas in the layer closest to the front does not succeed in relaxing generally and expands with an initial value of 

TVI. As already noted above, the computation method used does not permit obtaining the value of the para- 

meters on the gas front; hence, the vibrational temperature does not reach the value TV~ in the computations. 
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Exact ly  as in a gas flow wi th  ~ = cons t  = 1.4, a pp r ox i ma t e  s e l f - s i m i l a r  r e p r e s e n t a t i o n s  ex is t  for  the 
ve loc i ty  and dens i ty :  v = v(X), 0t 2 -~ ~o(X) for  eve ry  p l r l  in the ease  of gas expans ion  wi th  v i b r a t i o n a l  r d a x a t i o n  
in l a rge  t i m e s ,  where  X = r / t . a s  before .  They d i f fer  exact ly  as the ve loe i ty  and dens i ty  d i s t r i b u t i o n s  d i f fe r  for  
these  va lues  of pir~ in a fixed and su f f i c ien t ly  l a rge  t ime ,  for  t = 16, say .  

The v i b r a t i o n a l  r e l a x a t i o n  is fe l t  p r ine ipa l l y  in that the magn i tude  of the l i m i t  ve loc i ty  of both the s t a -  
t i ona ry  and n o n s t a t i o n a r y  flows i n c r e a s e s .  M o r e o v e r ,  because  of the s i n g u l a r i t y  in the behav io r  of the v i b r a -  

t iona l  t e m p e r a t u r e  du r ing  the approach  to the e scap ing  gas f ron t ,  r e c o n s t r u c t i o n  of the ve loc i ty  behav io r  oc-  
c u r s :  it  tends m o r e  to its l im i t  dependence  in the a r e a  of the n o n s t a t i o n a r y  r a r e f a c t i o n  wave than in the ca se  
of the " f rozen"  flow. 

In conc lus ion ,  let  us e s t i m a t e  the pos i t ion  of the v i b r a t i o n a l  t e m p e r a t u r e  " f reez ing"  point  in the a reas  of 
the s t a t i o n a r y  flow and the n o n s t a t i o n a r y  r a r e f a c t i o n  wave.  

The " f r eez ing"  point  is def ined as the point  w he r e  the magni tude  of the dev ia t ion  f r o m  e q u i l i b r i u m  
r e a c h e s  the o r d e r  of magn i tude  of the funct ion i t s e l f  [10]. In th is  ca se  (de~ = e ~ / r .  We use  the v i b r a t i o n  
f r equency  co s c o r r e s p o n d i n g  to the deformation,  mode of the CO 2 v ib r a t i ons  wi th  c h a r a c t e r i s t i c  t e m p e r a t u r e  
960~ The " f reez ing"  point  is then d e t e r m i n e d  f r o m  the condi t ion  

(dT/dt)f k (~%/kTl)  ~" = .~%/~v,, 

where  T c o r r e s p o n d s  to the e q u i l i b r i u m  case .  

Let us use  the a p p r o x i m a t e  s e l f - s i m i l a r  r e p r e s e n t a t i o n  of the dens i ty  0t 2 = q0(20, w he r e  

l al)~-2, a i = 0 , 4 3  for 0 < ~ < ~ l f ( > ~ + l ) / ( •  

(2~) = / a  %-1o . /  (3.1) 
( 2 , a . = : 2 , 3 2 . t 0  a for F x + l  ~4@t 

Then taking  into account  that  T ~ p ~ - t  and d T / d t  = ( ~ -  1)d i n o / d t  = 2 0r - 1 ) T / t ,  we obta in  for  the " f r eez ing"  

point tf = (T~co2/kTf)rVf, where  7 = 2(~ - 1). After  s u b s t i t u t i n g  the e x p r e s s i o n  for  r V we f ina l ly  have tf = 
(7% / Tfpf) exp (BT~ 1/3 - C) ; | = hw2 / k is the c h a r a c t e r i s t i c  t e m p e r a t u r e .  

In the s t a t i o n a w  flow domain ,  we obta in  the fol lowing e x p r e s s i o n  to d e t e r m i n e  the f r e e z i n g  point 

. f . - i  ~ ] 
a-4• x 1 | .  / • -- t ! - - 7 -  r~("-l) 

; T = k ~ - c ] ,  

% B ( % t  Jt'z 
w h e r e  a T lp l t z  ; b =--a-Tg02 \ ~ - 1  ; C = 3.9, by going f r o m  the t ime  v a r i a b l e  to the r ad ius  by me a ns  of the 

f o r m u l a  t = r / v  m c in d i m e n s i o n l e s s  v a r i a b l e s .  

F o r  the e s t i m a t e  we take }'~ ~ 1.25, @2 = 1000~ T~ - 2000~ pl r l  - 103 . Then r f  = 12 (in the c o m p u t e -  
t ions  r f  = 12-15).  

The posi t ion  of the f r e e z i n g  point in Lhe n o n s t a t i o n a r y  flow domain ,  obta ined unde r  the condi t ion  that the 
gas expands in e q u i l i b r i u m  in the s t a t i o n a r y  flow domain ,  is d e t e r m i n e d  by the e x p r e s s i o n  

s c~(,z~-z) -- ~ "  exp ( 2 •  a t a" 
a~i2z-- 11 
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-= t 0 ( see expression (3.1)). 

Under the same conditions as in the s tat ionary flow domain, we obtain 

K = r / t  = 3,66t-~ 

For  instance,  for t = 4 this yields rf = 10 (in the computations rf  = 10-12). 

As is seen f rom the last expression,  the freezing point in the nonstationary flow domain slowly moves to 
the s tat ionary flow section with time. 

In conclusion, we make a r e m a r k  about the influence of condensation on the gas flow. Vibrational re laxa-  
tion influences the gas flow during expansion principally because of heat t ransfer  f rom the vibrational to the 
translat ional  degrees of freedom. An analogous phenomenon of heat t ransfer  (latent heat of vapor formation) 
occurs  even during gas condensation. It is shown in [15] that a change occurs  in the distribution of the s t r eam 
parameters  during s tat ionary gas expansion (velocity, density, p ressure ,  and translat ional  temperature)  quali-  
tatively identically in these two cases .  There is no foundation to consider  that this analogy is spoiled in the 
nons tationary case. 

The maximum mass fraction of condensate does not usually exceed 20-30% during gas expansion. In this 
case energy will be l iberated intothe s t ream,  which is approximately equal to the energy s tored in the vibra-  
tional degrees of f reedom under the conditions considered in this paper (T 1 = 2O00~ 

Therefore ,  the influence of condensation on the gas flow can be traced qualitatively by means of the r e -  
sults presented above for the flow of a vibrationally relaxing gas, where the maximal influence will not ex- 
ceed, in o rder  of magnitude, the difference between the s t r eam parameter  distributions for the equilibrium 
and the "frozen" flows. 

The authors are grateful to P. A. Skovorodko for his useful discussion. 
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